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ABSTRACT 
 

This paper presents work toward indexing the image content in a collection of 17,000 cervical spine and lumbar spine 
images, for purposes of public dissemination by such systems as the Web-based Medical Information System (WebMIRS).  
These images were collected as part of a national health survey and to date no radiological or quantitative content has been 
derived from the images, except for our work, described in this paper.  Practical considerations, primarily of labor cost, make 
the job of deriving radiological interpretations or quantitative anatomical measures by manual methods very difficult.  For 
this reason, the acquisition of content information by automated means, or even by semi-automated means, which require 
human interaction, but significantly reduce the required labor, are very important.  This field is not in an advanced state of 
development, and the results we present are necessarily work in progress. 
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1. INTRODUCTION 

 
At the Lister Hill National Center for Biomedical Communications, a research and development division of the National 
Library of Medicine, we are building a biomedical information resource consisting of digitized x-ray images and associated 
national health survey data.  We have described the architecture and characteristics of this system in previous papers 1-2. This 
resource is called the Web-based Medical Information Retrieval System, or WebMIRS.  This paper discusses our current 
work toward the long-range goal of directly exploiting the image contents in our system.  In a future WebMIRS system, we 
envision that we will have in our databases not only text and raw image data, but quantitative anatomical feature information 
that is derived directly from the images.  We further envision the system to have capability to retrieve images based on image 
characteristics, either alone or in conjunction with text descriptions associated with the images.   
 
The current version of WebMIRS lets the user create a query using a Graphical User Interface and get the results displayed as 
either a table of database text records or as a display of images and related text.  Figure 1 shows a sample output screen from 
WebMIRS.  WebMIRS is an Internet database application, written as a Java applet, and usable by means of a standard Web 
browser.  Information on WebMIRS is available on our Web site:  http://archive.nlm.nih.gov. 
 
As detailed in the WebMIRS papers referenced above, our archive consists of records for two databases, corresponding to the 
survey data collected in the second and third National Health and Nutrition Examination Surveys (NHANES), conducted by 
the National Center for Health Statistics.  For the NHANES II survey, the records contain information for approximately 
20,000 survey participants.  Each record contains about two thousand data points, including demographic information, 
answers to health questionnaires, anthropometric information, and the results of a physician’s examination.  In addition, 
many of the participants were x-rayed: approximately 10,000 cervical spine and 7,000 lumbar spine x-rays were collected.  
The WebMIRS system makes the alphanumeric data available for query in a relational database system, and, at the user’s 
option, also returns the image data for display.   Image results returned are raw images only; no quantitative or even 
descriptive information about the images themselves is stored in the database. 
 
The images in the NHANES II survey were collected primarily for the study of osteoarthritis and degenerative disc disease.  
Biomedical features of interest to researchers in these areas have been identified by two workshops conducted at NIH, and 
consist of anterior osteophytes, disc space narrowing, and subluxation.  A database containing quantitative and descriptive 
image information that allows intelligent search for images that show varying degrees of these features is expected to be of 
research use for the osetoarthritis and related communities.  In addition, published research work3-4 in the field of vertebral 
morphometry suggests that a database with quantitative measures of vertebral dimensions may be useful for purposes such as 
studies in occurrence of spinal fracture and estimation of normative values for vertebral size.   

 



In order to derive such information directly from the images, detailed analysis and measurement of each image is required.  
Due to the prohibitive cost of manually carrying out such a process on 17,000 images, we are conducting research into 
methods for automating or semi-automating the process.  In this paper, we describe our initial work toward this goal, which 
consists of (1) developing an algorithm to find basic landmarks in the images by fixing a coordinate system in the anatomy 
itself, (2) implementing an adaptive grayscale thresholding method for isolating the anatomical components of the images, 
and (3) planned work for locating boundaries of individual vertebrae for the purpose of measuring geometrical dimensions, 
inter-vertebral spacing, and shape characteristics. 
 
We may characterize the content that we want from the images as being (1) basic orientation landmarks and directions, 
grounded in the anatomy of the image itself; (2) geometrical and positional data specific to the vertebrae, including counts of 
vertebrae present, location of vertebrae, identification of vertebrae, and coordinate location of reference points on vertebrae 
boundaries; and (3) data closely related to pathology in the spine, including presence of osteophytes (or sharpening of 
vertebral corners, sometimes accompanied by presence of isolated bony masses near the vertebrae corners), disc space 
measurements, and subluxation (or slippage of vertebrae out of normal alignment).  These three categories may be 
characterized as a rough progression from the lower to higher levels of semantic content in the images.  Steps  (1) and (2) are 
necessary for the eventual computer-assisted extraction of what might be termed the high-level, biomedical content of step 
(3).   It is this last, highest level of semantic content that is expected to be of greatest interest and value to the biomedical 
research community.  Our work is concerned with making progress toward the goal of getting all of the images indexed at 
these various levels by making the best combination of machine capability and human effort.  To date, most of our work has 
focused on the image processing aspects, and we continue that direction in this paper. 
 

2.  APPROACH 
 
In previous work5 we have given an overview of the indexing problem for these images and also have demonstrated6 some 
initial success in getting basic orientation information from cervical spine images by an algorithm that automatically places 
an orthogonal coordinate system with one axis U at the base of the skull and the perpendicular axis V positioned to intersect 
this axis at the point O (coordinate system origin) of greatest bone density  in the spine (as defined by brightest grayscale 
concentration).  In this paper we present work that improves the results obtained in [6] by implementing an adaptive 
grayscale thresholding technique, and we discuss plans to extend our work by using the derived U/V coordinate system to 
count and locate individual vertebrae in the cervical spine.  The adaptive thresholding technique, by improving the 
segmentation of the images over previously-used methods, improves this process. 
 
Review of the anatomy-based coordinate system.  The anatomy-based coordinate system described above is located using an 
algorithm with these basic steps:  (1) Apply grayscale thresholding to the image using a threshold that preserves the essential 
shape of the skull base in the jaw region and in the region of the skull posterior; (2) in the thresholded image, locate the skull 
base region at a coarse level, and measure slopes of tangent lines at points expected to be in the jaw region, and also for the 
points expected to be in the lower skull posterior region; (3) find the pair of points, one chosen from jaw region, one chosen 
from skull region, that have the closest agreement in slope of tangent line; (4) take these points as defining the coordinate 
system axis U along the skull base; (5) determine a subinterval R of the U axis which contains the intersection of U with the 
spine; (we define this region R as the subinterval of the U axis bounded by certain characteristic grayscale patterns--two dark 
areas marking the spine boundaries, separated by a continuous bright area corresponding to the spine itself); and (6) search 
within the U axis/spine intersection region R for the point O of maximum brightness; this point  defines the origin of the U/V 
coordinate system and the intersection of the orthogonal axis V with the U axis.   Steps in calculating the U/V axes are 
illustrated in Figure 2.  Figure 2A shows a grayscale cervical spine x-ray image.  Figure 2B is the same image, with the 
boundaries for a grayscale threshold superimposed on the original image.  It is the boundaries of this thresholded image that 
are used in the computation of the U axis.  Figure 2C shows the U axis that has been computed.  Finally, Figure 2D shows 
the V axis added orthogonally to the U axis, and intersecting the U axis at the point of greatest grayscale value in the line 
segment determined by the U axis/spine intersection. 
 
This anatomy-based coordinate system (ABCS) algorithm is described in detail in [6], which discusses test results, failure 
modes, and planned improvements.  Most current effort with this algorithm is oriented toward improving robustness of the 
grayscale thresholding, and for handling cases where expected gross anatomical features (e.g. jaw) are not present because of 
the positioning of the subject in the image.  Of 25 test images selected at random from our collection, 4 fail to exhibit a clear 
jaw profile, which the ABCS algorithm requires.  This is a significant fraction of cases, which the current ABCS algorithm 
cannot handle.  In addition, cases occur where the grayscale threshold used to separate out the skull base shape from the rest 



of the image does not preserve the essential shape well.  This latter case is illustrated by Figures 3A and 3B.  For this 
particular image, the simple approach (i.e., thresholding by image global mean value) used to grayscale threshold the image 
failed to yield a meaningful contour in the jaw area; the result is a badly located set of U/V axes.  To address this problem, 
we have implemented an adaptive grayscale thresholding algorithm based on work by Chow and Kaneko7-8. 
 
Use of the U/V coordinate system in locating, identifying, and indexing spine anatomy.  To make an interpretation of the 
image contents, basic orientation within the image anatomy is required: we need a beginning frame of reference for making 
progress in analyzing the geometry of the anatomical structures that we expect to find.  The U/V coordinate frame, with 
origin fixed within the upper spine area, and with orientation fixed relative to the skull base, is hypothesized to provide 
sufficient precision to allow the image region containing the vertebrae to be identified.  Our first approach to getting 
characteristics of the vertebrae themselves is to initially estimate dimensions and location of a  rectangular region expected to 
contain the vertebrae, using a priori information manually derived from test images.  Specifically, we compute the U/V 
coordinate system for these images, manually identify a rectangular region which contains the vertebrae, but which is no 
larger than is necessary. 
 
 The next step toward indexing the image using characteristics of the spine vertebrae consists of analyzing this region to 
determine the boundaries of the vertebrae contained within it, and, once vertebral boundaries are obtained, to derive 
measurements from the vertebral shapes, which are relevant to our indexing goals.  For example, an indexing measure of 
interest is spacing between vertebrae, which is a quantity used to assess disk degeneration within the spine.  Other measures 
of interest include the anterior and posterior vertebral heights:  the ratio of these values has been used to assess fracture 
within the spine.  Some features will require shape analysis of the vertebral boundaries; these include detection of 
osteophytes—sharpening of the corners of the vertebrae; these are expected to require careful derivative analysis of the 
vertebral boundaries, and the fidelity with which the boundary has been derived will be critical for getting useful results.  
This last point highlights one of the greatest difficulties in image processing of the spine images:  in many cases, the vertebral 
boundaries are ill-defined in the sense of appearing visually fuzzy or indistinct. 
 
An approach that we are pursuing for analyzing regions for presence of vertebrae and for identifying boundaries of these 
vertebrae uses a technique of edge-searching  which combines (1) estimation of the expected range of tangent angle values, 
measured in the U/V coordinate system, for anterior vertebrae edges; (2) gradient thresholding with high threshold to 
compute a pixel set expected to contain parts of the anterior vertebrae edges, (3) reduction of this set to only those pixels 
lying on the anterior vertebrae edges by using the tangent angle criteria computed above, (4) gradient thresholding with low 
threshold to compute a pixel set expected to contain most of the vertebral edge pixels (but also extraneous edges and lines 
within and external to the vertebrae), and, finally, (5) reduction of the pixel set computed in (4) to only those pixels  lying on 
vertebral edges, by constraining the pixels in the reduced set to lie on continuous curves with those computed for the anterior 
edges in (3). 
  

3.  RESULTS 
 

Results are given in this section for the initial testing we have done on our implementation of an algorithm for adaptive 
thresholding. Our implementation of this algorithm of Chow and Kaneko may be summarized in the steps below.  We have 
followed the original published approach closely, except as noted. 
 
 (1) Divide the image into overlapping subimages.  Our images are cervical spine images of dimension 335x408 
(reduced one-quarter scale from the original spatial resolution with which they were digitized.)  We used 64x64 subimage 
blocks with 50% overlap for the processing, yielding a 10x12 array of 64x64 subimages for processing. 
 (2) Within each subimage, model the distribution of the grayscale values z as a mixture of two Gaussian density 
functions.  The model used is given by the standard formula 
 

f(z;p1,p2,m1,m2,s1,s2) = p1 * g1(z;m1,s1) + p2 * g2(z;m2,s2), 
 

where g1() and g2() are Gaussian with (mean, standard deviation) of (m1,s1) and (m2,s2), respectively, and p1, p2 are the 
proportions of g1() and g2() which contribute to the final density.  p1 and p2 satisfy the relationship: p1 + p2 = 1, so that the 
model has only five independent parameters. 
 (3) Estimate the five independent parameters of this mixed-Gaussian density.  Let h(z) be the observed histogram for 
a 64x64 block.  We use a conjugate gradient method to minimize the objective function J(), defined as the sum-square-
differences between the observed histogram values and the values predicted by the model f():   



 
J(p1,p2,m1,m2,s1,s2) = SUM [f(z;p1,p2,m1,m2,s1,s2)-h(z)]**2, 

 
where the summation is taken over all grayscale values z that are observed in the 64x64 block; J() is minimized  as a function 
of the parameters (p1,p2,m1,m2,s1,s2).  The outputs of the minimization process are estimates for p1 (from which p2 is 
computed), m1, s1, m2, and s2. Prior to doing this estimation, we do a variance test to determine the reasonability of 
modeling the grayscale values in the subimage as two distinct probability distributions.  If very low grayscale variance was 
found, we assume that such a model is not reasonable for the subimage.  Chow and Kaneko implemented an additional test 
for likelihood of being a mixed Gaussian density by analyzing the ratio of peaks to valleys in the grayscale distribution; we 
have not implemented this feature at this point,   
 (4) Compute a threshold to separate the two densities based on a maximum likelihood approach, which uses the 
parameters estimated for the mixed-Gaussian density.  Specifically, the threshold t was computed by solving 
 

A*t**2 + B*t +C = 0 
 

for t, where 
A=(1/s1**2 ) – (1/s2**2), B=2*((m2/s2**2)-(m1/s1**2)), and 

 
C=(m1**2/s1**2)-(m2**2/s2**2)+2*ln(p2/p1). 

 
 (5) For each subimage for which the estimation process was successful, a threshold t was obtained.  For the 
subimages where the variance was too low to justify the mixed-Gaussian model, or subimages where the estimation process 
failed to converge, a null threshold value was temporarily assigned. 
 (6) The thresholds obtained by the estimation process are then used to interpolate thresholds to the entire set of 
64x64 subimages and, finally, this grid of thresholds, one per 64x64 subimage, with the overlapping subimages covering the 
entire image, is used to interpolate a threshold value for each point in the entire image. 
 
Example results are shown in the figures.  Figure 4A shows a cervical spine image input which was first thresholded using 
the image global mean, for comparison with the output from the Chow-Kaneko processing.  Figures 4B and 4C show the 
respective results of these two methods.  For this particular image, the thresholding produced by the global mean thresholding 
was actually adequate for location of the U/V axis system (note the obvious jaw and posterior skull boundaries in Figure 
4B).  However, in many images, the jaw contour in particular is very hard to distinguish using global thresholding.  Also, 
note the improvement in accuracy of the posterior skull contour in Figure 4C, as compared to 4B.  Finally, even though it is 
not of importance for U/V coordinate system locating, note the much greater detail in spine anatomy of Figure 4C, as 
compared to 4B.  This suggests a possible future role for this thresholding algorithm as an aid in segmenting the vertebrae 
themselves. 
 
Figure 5 demonstrates the increased vertebral detail possible in the adaptive thresholding with an example subimage taken 
from Figure 4.  In Figure 5A, a 64x64 subimage taken from the region of the C2 vertebrae is shown, along with the 
appearance of the same subimage after global thresholding (Figure 5B) and by Chow-Kaneko thresholding (Figure 5C).  
Figure 5C shows clear separation of two vertebrae, while 5B does not even reveal the presence of vertebrae.  
 
Initial results given by the Chow-Kaneko algorithm appear quite promising, but our work is still at a preliminary stage.  Some 
of the problems we are dealing with include apparent sensitivity of the convergence to good initial parameter estimates.  It is 
not clear at this stage whether the approach taken in the original work is adequate for having the minimization algorithm 
converge for the subimages in these digitized x-rays.  We have incorporated the same method used by Chow and Kaneko for 
the computation of the a priori parameter values.  This method is as follows: the histogram for the 64x64 subimage is divided 
into two parts, one part consisting of the grayscale values in the subimage larger than the mean grayscale value for the 
subimage, and the other part, of the grayscale values in the subimage smaller than this mean grayscale value.  Within these 
two regions of the histogram, grayscale mean values (m1,m2) and standard deviations (s1,s2) are computed.  Then, the 
parameter pairs  (m1,s1) and (m2,s2) are used as a priori values for the Gaussian curves in the estimation process.  A priori 
values for the fractional  coefficients for the two curves are set as p1=p2=0.5.  
 
It should be noted that convergence of the minimization problem for this choice of a priori parameter values is not assured, 
although, in our experience on the cervical spine images, improvement in the parameter values, as measured by reduction in 
the magnitude of the objective function, is usually attainable, but there is no assurance that the result is the desired optimal 



minimizing parameter set.  As is typical of many nonlinear minimization problems, convergence to a solution within the 
feasible range of values is dependent on good starting values.  We have done some testing on both synthetic and real image 
data to try to understand the degree of dependence on good a priori parameter values for this problem.  Figure 6 shows one 
result, using synthetic data.  Figure 6A shows a mixed-Gaussian probability density with “truth” parameters 
(.4,160,15,190,10) which we synthesized to model the “truth” grayscale distribution for an image subregion which has 
grayscale values lying in the range (125,215).  To each value on this curve we added 10% Gaussian random noise, also 
shown in Figure 6A.  This noisy data was then used to model for histogram data collected from an image subregion.  We 
then solved for the best set of parameters which fit a mixed-Gaussian distribution to this noisy data, using 10% perturbations 
added to each of the components of the truth parameter set to obtain a priori parameters, i.e. the a priori values used were 1.1 
* the truth parameters.  The resulting a priori mixed-Gaussian curve is shown in Figure 6B.  Figure 6C shows the solution 
curve obtained by minimizing J() for a set of minimizing parameters.  The solution parameters obtained were 
(.41,160.4,15.6,190.2,9.8).  This example gives a basically good result; however, pushing the a priori error to 20% results in a 
nonfeasible solution to the problem.  More extensive testing is needed, but this may give some indication of the error 
tolerance in the initial guess at the solution.  In Figure 6D we show the grayscale histogram for the 64x64 image subregion 
of Figure 5A.  (This data lies in the grayscale range (125,215) and in fact was used to choose the range for the synthesized 
data discussed above.)  Superimposed on this histogram is the a priori mixed-Gaussian distribution computed from a priori 
parameter values, which were calculated from the subregion histogram by using the Chow-Kaneko approach, as described 
above.  In Figure 6E the subregion histogram data is again shown, with the solution mixed-Gaussian curve obtained by 
minimizing the objective function J() defined above. 
 
It should be noted that solving the minimization problem is relatively expensive in computer time:  carrying out the complete 
Chow-Kaneko algorithm for one of our test images, including solving for the parameters which minimize the objective 
function for each 64x64 subimage, takes on the order of 1 or 2 minutes on a 266 MHz  PC. 
 
For implementation of the above algorithm, we have used the MATLAB m-file language, under MATLAB 5.2.  For the 
conjugate gradient minimization, we used the E04DGF routine of the Numerical Algorithms Group (NAG), as implemented 
in the MATLAB NAG Foundation Toolbox. 
 

4. CONCLUSION 
 

Our approach to indexing digitized x-ray images of the cervical spine for content relevant to researchers in the field of spine 
disease and injury is to first obtain a basic geometrical orientation within the anatomical features contained within the image, 
by locating an orthogonal U/V coordinate system with origin within the spine, and with one axis tangent to the base of the 
skull.  This coordinate system is then used as the basic reference frame for estimating the subregion of the image containing 
the vertebrae, and for estimating the orientation of the vertebrae.  We are approaching the problem of determining vertebral 
boundaries within this subregion using gradient thresholding to detect vertebral edges, and expected edge orientation to 
eliminate spurious points not on the vertebral edges.  Our current work in progress consists of continued refinement of the 
U/V coordinate system algorithm for improved performance, and in developing and evaluating the algorithm to locate and 
identify vertebral boundaries. A key concern in our work is to assess the degree to which computerized methods may assist in 
the accurate derivation of such x-ray image content and to create a concept of human-machine interaction that exploits the 
strengths of both the human participant and computer capability for solution of this particular problem.  
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Figure 1.  WebMIRS output screen, resulting from a database query to find all records for 
people over 60 who had low back pain for at least a two-week period.  The text at bottom gives 
field values for one of the people whose image is shown in the middle at the top of the screen. 
 



Figure 6.  (A) A mixed-Gaussian density “truth curve” was synthesized, and  Gaussian zero-mean random noise was 
added at each point (with sigma = 10% of that data point value).  This noisy curve models the histogram within an image 
subregion.  (B)  A priori parameters for a mixed-Gaussian distribution were selected by perturbing the truth parameters 
from (A) additively by 10% for each parameter.  (C)  The noisy data from (A) and the a priori parameters from (B) were 
used to solve iteratively for the best parameter set to fit a mixed-Gaussian curve to the data.  The solution parameters 
were used to plot the curve in (C).  In (D) the actual histogram data for the 64x64 image subregion shown in Figure 5A is 
plotted, along with a mixed-Gaussian curve computed from a priori estimates of the curve’s parameters.  (E) shows the 
solution curve for the actual image data case, iterating to a solution from the a priori curve shown in (D). 

A – synthesized truth curve 
and data 

B – a priori curve (perturbed truth 
curve) and synthesized data 

C – solution curve for 
synthesized data 

D – a priori curve and image 
64x64 subregion histogram data 

E – solution curve for image 
64x64 subregion histogram data 



 
 
 

Figure 4.  (A) CSPINE image; (B) Image thresholded by global mean grayscale value; (C) Image 
thresholded adaptively by Chow-Kaneko algorithm. 

Figure 5.  (A)  64x64 block cut from image 4A.  (B) Corresponding block cut from the globally-thresholded 
image in 4B.  (C) Corresponding block cut from the Chow-Kaneko thresholded image in 4C. 
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 Figure 2.  (A) Original cervical spine image with borders removed.  (B) Foreground/background separation, by 
grayscale thresholding.  The edge of the thresholded image is superimposed on the original image.   (C) U axis fixed 
along the base of the skull. ( D) U and V axes fixed. V is shown as the short axis orthogonal to U. 

Figure 3.  Illustration of effects of poor thresholding.  (A) The jaw edge curve for this image is very inaccurate in 
following the jaw contour when global mean grayscale thresholding is used.  (B)  Results of the algorithm for (A). 
(C)  The same image was adaptively thresholded using the Chow-Kaneko algorithm.  Now, a fraction of the edge 
curve follows the jaw contour more reasonably.  (D) Results of the algorithm on (C). 
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